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Nonlinear, parametrized equations ’/J
F(zA) =0, f.1)

represent models of equilibrium problems for many physical systems. If

F: R »> RM . n=m+p, p 2 1. is continuously differentiable on RN, then the
regular solution manifold

M={xeRM;F(x)=0, rank DF(x) =m } (1.2)

is a p-dimensional, differentiable manifold in RN without boundary. Wwe
shall assume always that F is at least of class C, r 2 2.

The standard procedures for the computational analysis of such
solution manifolds are the continuation methods. When the parameter
dimension p exceeds unity, these methods require a restriction to some
path on the manifold and then produce a sequence of points along that
path. In general, it 1s not easy to develop a good picture of a multi-
dimensional manifold from information along one-dimensional paths: thus
there is growing interest in computational methods which generate muilti-
dimensional grids of solution points. Up to now, the only such method
appears to be that of E.L. Allgower and P.H. Schmidt [1]). It utilizes a

1) University of Pittsburgh, Pittsburgh, PA 15260, USA
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.a simplicial continuation algorithm to triangulate a p-dimensional manifold
$ by means of p-simplices.

In [10] a new algorithm was developed for computing vertices of 2
triangulation (by p-simplices) of certain subsets of a p-dimensional

X solution manifold (1.2). It depends on an aigorithm for constructing 3

o moving frame on these subsets of M. We present here an overview of
‘ these two algorithms and illustrate their effectiveness with some

;3:? numerical exampiles.
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N 2. Local Coordinate Systems

vy

o At any point x of M the tangent space T, M may be identified with

>,

3 'y the kernel of the Jacobian DF(x),

He

f»: T, M = ker DF(x) = {u € R"; DF(x)u = 0 }, (2.1)

;{;:

oo and then the corresponding normal space Ny 1S specified as the
) orthogonal complement N = T, M4 = rge DF(x)T.

..‘::

A given p-dimensional subspace T C R" induces a local coordinate

% system of M at any point x € M where

W T N NM = (0) (2.2)

=

o : :

bl As shown, for instance, in [4] or [9], at any x € M where (2.2) holds there
) exist neighborhoods V| C T and V, € R" of the origins of T and RN,

'& respectively, and a unique C’-! function w: vV, = T, w(0) = 0, such that

i LY

3

Pt MNAVy, ={yeRm y=x+t+wt)tev,) (2.3)

t..; N

X

:;E A well-known procedure for computing tangent bases IS provided bu

! the OR-decomposition

X n
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DF(x)T =Q [R] . Q=(Q,.Qy) . (2.4)
lo]

where the n x n matrix Q 1s orthogonal, Q, has m columns, and the m < m

matrix R is upper triangular and non-singular for x € M. Then the p .
columns of Q, form an orthonormal basis of T,M.

If x € M is a point where the QR-decomposition (2.4) has been
computed. then with any starting-point y = 4O sufficiently near x 1n x+T,M
we may apply the chord-Gauss-Newton process:

For k=0.1,... until convergence
1) solve RTz = F(y) for z € RP (2.9
2)y:=y-Qz0)T

The convergence theory of these methods 1s well understood. In particular,
a theorem of Deuflhard and Heind! [3] can be used to ensure that there
exists for any x € M a neighborhood V = V(x) of x in x+TxM such that for
any y In V(x) the process (2.4) converges to some y* € M. Moreover, we can .
show readily that y*-y0 € N,M and hence that, in the notation of (2.3). we

have y* = x+tsw(t), t=y0-x. In other words, the process (2.5) represents an
implementation of the “corrector” mapping w of the iocal coordinate
representation (2.3).

; ina F slgoritt :

Recall that a vector field of class CS, s < r, on an open subset My of
M is a CS function u : Mg = TM into the tangent bundle TM such that u(x)
belongs to T,M for x each Mg. A moving frame of class CS on M,
assoclates with each x of Mg an ordered basis (frame) (ul,...uP} of T,M

such that each coordinate map ui : Mg = TM, 1=1,....p defines a vector Tield
of class CS on M,. We shall consider only orthonormal moving frames.
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In our setting, an algorithm for constructing a moving frame has o
generate for each x of some open subset Mg of M an n x p matrix U(x)

with orthonormal columns such that DF(x)U(x) = 0 and that the mapping
U Mg = RPXM 15 of class CS on Mg. As noted In (2], the QR-decomposition

(2.4) does not produce continuously varying matrices U(x). This
observation extends to other algorithms of a similar nature. The three
remedies proposed In (2] do not concern the generation of a moving frame.

For the moving frame algorithm developed in [10] we assume that
some method is availlable for computing at the points x of M some n x p
matrix Ug(x) with orthonormal columis that span T,M. Of course, Uo(x) 15

not expected to depend continuously on x. For instance, we may use the
QR-decomposition (2.4).

The algorithm is based on the selection of an n x p reference matrix
Tr with orthonormal columns. Then for a point x of the manifold we

proceed as follows:

(1) Compute the tangent basis matrix Ug(x) ;

(2) form Ug := Ug(x)T :

(3) compute the singular valye decomposition (3.1
ATUgB = £ and save A and B ;

(4) with Q = ABT form the basis matrix Ug(x)Q.

The following result. proved in [10], guarantees the validity of this
algorithm:

Iheorem: Let Mg be the open subset of M where the subspace of RM
spanned by the columns of the reference matrix T, induces a local

coordinate system. Then the mapping x € M > Ug(x)Q € R™P given by the

algoritnm (3.1) 1s of class C'~! on Mg and defines an orthonormal moving
frame on Mg.

If the QR-decomposition is used in step (1) and the dimension of the
manifold 1s small in comparison with the space dimension, then the
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principal cost of (3.1) derives from the approximately (2/3)n3 flops
needed for the decomposition of DF(x)T.

In practice, it has turned out to be advantageous to construct the
reference matrix T, in the following manner. We select a reference point

x" on M. Then the Euclidean norms
Ti= JUpxNTel |, ,i=t...n

of the rows of Ug(x") are the cosines of the principal angles between the
tangent space of M at x™ and the i-th natural basis vector e! of R". The T;
are independent of the choice of the basis matrix Up(x). Let ij,....i, be
the indices of the p largest of these T (with ties broken, say.
lexicographically). Then we form the desired reference matrix T, as the
matrix with the columns e! , i=ij,....ip. This construction is analogous to
the local parameter selection in the continuation program PITCON, [11].

. The Triangulation Algarit

For the triangulation of a p-dimensional manifold we begin by
constructing a reference triangulation on RP. Let T be the collection of
simplices of this triangulation. Except for considerations of
computational efficiency and simplicity, no restrictions are placed on £.
We refer, for example, to {12] for various algorithms for triangulating RP.
For our purposes, the well-known Kuhn-triangulations have been useful,

and, in the case p = 2, triangulations of R2 by equilateral triangles have
been applied as well.

Let £ denote a given vertex of this triangulation inRP and h > 0 a
fixed steplength. Then for any point x € M where a basis matrix U of T.M
IS known, the mapping

ARP =+ x+T,M, An=x+nUn-£). neRp (4.1)

<

T Y
A

27,




]

transfers £ from RP onto x + T,M. As before, let V(x) C x + T,M denote

the local convergence domain of the Gauss-Newton process (2.5) . If 1 is
a vertex of £ for which An € V(x), then (2.5) can be used to map An into
apoint y € M. The set T'(E,x,U) of vertices of £ that can be mapped onto M
in this way shall be called the “patch* corresponding to &.x,U . (The
steplength h will be held fixed throughout).

o An “idealized” form of our algorithm can now be phrased as follows:
e
;'.;f:. (1) Select a reference vertex £* of T :
£ (2) Select a reference point x* € M and let Mg be the subset
where, by the theorem, the moving frame algorithm applies ;
g l (3)Set x =x*, &=§&n;
N (4) Mark the vertex £ as “used” ;
(5) While x
' (5 ~ & as a "center”
i £u) Compute the frame U(x) by algorithm (3.1) ;
'Z (Sc) Select all vertices of the patch I'(E,x,U(x))
X ,‘3 which have not yet been marked "used” :

(5d) Map these vertices onto M and mark them “used” :
(Se) Choose a “used” vertex £ of £ not marked a “center*

; t§ and let x be its computed image on M ;

NS

v The points computed on M inherit the connectivity pattern of the
i:f original simplices of £ which, in turn, induces a simplicial approximation
e Mg Of M in RN,

o

H0e)

" The algorithm is still “idealized” because, in practice, it is
5 impossible to check the condition x € Mg and to identify the vertices of Z
}i‘ that belong to I'(§,x,U(x)). Thus, special provisions have to be added in
f. order to overcome the possible failures due to these missing checks. we

shall not go into details here. The principal approach is to select a
“standardized” patch of £ which is used in step (Sc) in place of I'(E,x,U(x)).
:;g Then, in step (Sd), appropriate alternatives are introduced for all vertices
o where a failure of the corrector iteration is encountered.

o, ¥ <y L

AR P R R PO SRR TR SR En LN
S ,‘ e

, SRS 4 S
14X} U AR LSRN A X EALLY w.t', L :\.-!‘:‘»4 S pl':ll‘n.)a i’e‘l'.‘l'ﬁ



As noted, for two-dimensional manifolds 3 reference triangulation
of equilateral triangles can be used. Then the “standardized” patch is the
hatched, star-shaped region in the center of Figure 1. At each vertex, the
second of the two integers is a counter and the first one identifies the
“center” £ that is used in mapping that vertex onto M. Thus, after the
reference vertex 0, the nodes 7,...,12 become centers which serve to map
the nodes 13....,42 onto M. Then the process continues with nodes
17,18,19,23,24,28,29,33,34,38,39,42 as centers. This is no longer shown
in the figure, but, in practice, we always continued through this further
stage. It results in a total of 114 triangles on M and involves 19 centers
and hence as many Jacobian evaluations. This indicates the efficiency of
the algorithm. In fact, in terms of computed points per Jacobian
evaluation, the method performes better than most continuation processes.
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s 9. Examples
.
Y we present now a few numerical examples to Indicate the
. performance of the methods. But space limitations force us to be brief.
o More extensive examples will be given elsewhere.
2
o Our first example concerns the well-known Belousov-Zhabotinsk i
reaction [13]. As in [6] we write the mass balance equations in the form
s
% (H-x)xo* X (1-x)) - €8x, =0
s “(ux )% + x3 + €28(oc%2) =0 (5.1)
1 Xy - X3(|"B) =0
23
A If €, = 1/1,500, €5 = 1/56,250, and y = 8.4x10-6, then, as discussed In
o l 2 H
3 [6), there is an isola point approximately at the point with the coordinates
L SN
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Xy =0.249, x2 = 0.750, x3 = 0.125, o« = 3,508, B = 0.997. This point was
usea as our reference point on M, and Figure 2 shows the computedq
simplicial triangulation (based on the reference trianguiation of Figure 1).
The printed page is the «,8-plane and X2 15 the third coordinate in the
figure.

Our second example concerns the roll stability of maneuvering
airplanes. Without going into details, we use the equations originally
formulated in [7] and given in (8] and (S) in a simplified form Ax+®(x) = 0.
x € R8 . Here A1s a5 x 8 matrix and ¢: R8 » RS a quadratic function. The
(dimensionless) control parameters xgx7,xg denote the elevator, aileron,
and rudder deflections, respectively. The bifurcation diagram for rudder
deflections xg = 0 was given in [8] and again (with some extensions) in (S).
In the neighborhood of the origin of the xg.x7-plane it has the form shown
In Figure 3.

b S LS WWLRSOED | SIS §Y)



The process was afL eC ~ "7 37 3L, » 7 <
point B, as center. The resy 1S are siw” 7 - e = wTeTe T
page IS the xg.xz-Diane and 'Ne '~ ir7 TurTrae e
trianquiation contains aisc "ne L 'urtat 4 T o s’ -
emanating from these two ifurcal of Lo 7's 27~
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- The examples indicate that the algorithms work very efficrently,
‘_ even around singularities. Thus, as intended, they do indeed provide a new
. tool for deriving information about the shape and features of the manifold.
Of course, besides any graphical representation, the extensive numerical

.« s
I

-~ Y Y ISASE YRS
.’-.‘. .-".. " 'bj'\ \..“-\.. ‘ .‘.. ¢ Y




mmmm“wm Lo ande el ahosah i et al a8 T Ty

L 23

output of the process contains a wealth of further information. For
instance, linear interpolation between the computed points defines the

.‘ earlier mentioned simplicial approximation My of M. The corrector process

can be started from any point of My to produce additional points of M. In
o addition, for any given functional it is easy to compute a contour plot of
N its values on Mg. For instance, in some structural problems 1t may be of
9 interest to determine lines of constant stress components. Similarly, the
foldlines on M represent contour lines with respect to a measure of the

orientation of the projection of the tangent spaces onto the parameter

2-’ space. This provides for a simpie method of approximating the fold-lines
> on M wnich can then be used to compute the fold points themselves by
- means of one of the numerous local iterative processes available for that
N purpose. Examples of these, and other post-processing procedures will be
-, given elsewhere.
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